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Consider an infinite two-dimensional acoustic waveguide containing a long rectan-
gular obstacle placed symmetrically with respect to the centreline. We search for
trapped modes, i.e. modes of oscillation at particular frequencies which decay down
the waveguide. We provide analytic estimates for trapped mode frequencies and prove
that the number of trapped modes is asymptotically proportional to the length of the
obstacle.

1. Introduction
In this paper we consider an infinite planar waveguide containing an obstacle. We

assume that the waveguide is occupied by an acoustic medium and study the free
vibrations of this medium. Mathematically the problem is described by the Helmholtz
equation for the potential of displacements φ(x, y), subject to Neumann boundary
conditions on the sides of the waveguide and on the boundary of the obstacle (hard
walls). The same mathematical problem appears in the study of water waves in
channels; see, for example, Evans & Linton (1991) and Callan, Linton & Evans
(1991).

If for a particular vibration frequency the problem has a non-trivial solution
decaying at infinity, we shall say that we have a trapped mode. As pointed out in
Evans, Levitin & Vassiliev (1994), Roitberg, Vassiliev & Weidl (1998) and Davies
& Parnovski (1998) the existence of trapped modes is usually related to certain
symmetries in the problem. In this paper we deal with the most basic type of symmetry,
namely when the obstacle is symmetric about the centreline. We restrict ourselves to
the study of antisymmetric modes, and search for trapped mode eigenvalues below
the first antisymmetric cutoff.

It was proved in Evans et al. (1994) that for a fairly general symmetric obstacle
there is at least one trapped mode. The purpose of this paper is to study what
happens when the obstacle is long. For definiteness we assume throughout the paper
(apart from the last section) that the obstacle is a rectangle of length 2a > 0 and
width 0 6 2b < 2 (b = 0 corresponds to an infinitely thin rigid plate). Obstacles in
the shape of rectangular blocks or plates are standard test cases studied previously
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Figure 1. Domain Ω̃.

by other authors, see, for example, Evans & Linton (1991), Evans (1992) and Evans
& Linton (1992).

The main result of our paper is that as a→ +∞ the total number of trapped modes
is asymptotically equal to a (see Corollary 3 in § 3). Thus, for a long rectangular
obstacle the total number of trapped modes is asymptotically determined only by the
length of the obstacle. Moreover, we prove (Theorem 5.1) that the same is true for
long obstacles of fairly general shape. Numerical results are given in § 4.

We were to a large extent motivated by Evans & Linton (1991), Evans (1992) and
Evans & Linton (1992). Though the numerical results of these authors do not extend
to very long obstacles, they helped us predict the asymptotics. Moreover, for b = 0
our asymptotics can be obtained directly from Evans (1992).

2. Statement of the problem
Let Ω̃ be the unbounded planar domain defined as

Ω̃ = {(−∞,∞)× (−1, 1)} \ {[−a, a]× [−b, b]}
(see figure 1), where a > 0 and 0 6 b < 1. We are interested in finding trapped modes,
i.e. eigenvalues of the Neumann Laplacian in Ω̃. In other words, we are looking for
the values of λ for which there exists a non-trivial square-integrable solution φ(x, y)
of the Helmholtz equation

−∆φ = λφ in Ω̃ (2.1)

subject to the boundary conditions

∂φ

∂n

∣∣∣
∂Ω̃

= 0 (2.2)

(note that the boundary ∂Ω̃ is the union of the boundary of the strip and the boundary
of the obstacle). The spectral parameter λ is related to the vibration frequency ω as
λ = ω2/c2, where c is the speed of sound in the medium.

It is a standard fact (see, e.g., Evans et al. 1994) that the spectrum of the problem
(2.1)–(2.2) is the non-negative semi-axis [0,+∞). Thus, the whole spectrum is essential.
Moreover, it is known that the spectrum consists of the absolutely continuous part
and, possibly, of eigenvalues of finite multiplicity which can accumulate only at
infinity. Therefore, eigenvalues (if any) are embedded in the continuous spectrum. In
general, finding such eigenvalues (both numerically and theoretically) is not an easy



Trapped modes in a waveguide with a long obstacle 253

y

x

N

D

0

N

–a a

b

1

N

N

D

Figure 2. Domain Ω+.

problem because they are extremely unstable and can be destroyed by an arbitrarily
small perturbation.

However, in our special case the situation is simplified because of the symmetry;
see Evans et al. (1994), Roitberg et al. (1998) and Davies & Parnovski (1998) for a
discussion of the notion of symmetry in this setting. Namely, let us consider functions
which are odd in y:

H1 := {φ ∈ L2(Ω̃) |φ(x,−y) = −φ(x, y)}.
One can easily check that H1 is an invariant subspace of L2(Ω̃) with respect to the
action of −∆. Moreover, the essential spectrum of −∆|H1

is the interval [π2/4,∞).
Therefore, the eigenvalues of −∆|H1

lying in [0, π2/4) are stable under small pertur-
bations, and one can find such eigenvalues using standard variational methods. The
spectral problem for −∆|H1

is equivalent to the spectral problem for the Laplace
operator in

Ω+ := {(x, y) ∈ Ω̃ | y > 0}
with Neumann boundary conditions on the ‘old’ boundary and Dirichlet boundary
conditions on the ‘new’ boundary {(x, y) | y = 0, |x| > a}, see figure 2. Hence, the
problem is reduced to finding values of λ for which there is a non-trivial square
integrable φ(x, y) satisfying the Helmholtz equation

−∆φ = λφ in Ω+ (2.3)

subject to the boundary conditions

∂φ

∂y

∣∣∣
y=1

= 0, (2.4)

∂φ

∂y

∣∣∣|x|<a, y=b
= 0, (2.5)

∂φ

∂x

∣∣∣|x|=a, 0<y<b = 0, (2.6)

φ ||x|>a, y=0 = 0. (2.7)

All the eigenvalues of (2.3)–(2.7) lying in [0,π2/4) can be found using the variational
approach. Put

Q(φ) :=

∫ ∫
Ω+

|∇φ|2 dx dy∫ ∫
Ω+

|φ|2 dx dy

, (2.8)
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λ1 := inf Q(φ), (2.9)

where the infimum is taken over functions φ 6≡ 0 satisfying the boundary condition
(2.7) (here we do not have to impose the Neumann conditions (2.4)–(2.6) because they
are automatically satisfied at the extrema of Q(φ)). Now, if λ1 < π2/4, then λ1 is the
first eigenvalue of (2.3)–(2.7) and the function φ1 on which the infimum is attained
is the eigenfunction corresponding to λ1. (It is easy to see that λ1 > 0.) Analogously,
if λ2 := infφ⊥φ1

Q(φ) < π2/4, then λ2 is the second eigenvalue of (2.3)–(2.7) and the
function φ2 on which the infimum is attained is the eigenfunction corresponding to
λ2. This procedure can be repeated until we get λk+1 = π2/4. Then we will know that
in the interval (0, π2/4) there are exactly k eigenvalues of the problem (2.3)–(2.7) and
these eigenvalues are λ1, . . . , λk . However, we still will not be able to say anything about
eigenvalues lying in [π2/4,∞). To find them one should either use a different approach,
or find a new symmetry which will move the continuous spectrum further up.

In our case there is another obvious symmetry – reflection with respect to the y-
axis. This symmetry does not change the continuous spectrum, but nevertheless makes
computations easier. So let us consider the two subspaces

H± := {φ ∈ L2(Ω+) |φ(−x, y) = ±φ(x, y)}.
These subspaces are invariant under the action of −∆. Therefore, the spectrum of the
problem (2.3)–(2.7) is the union of the spectra of the restrictions of (2.3)–(2.7) to H+

andH−. Moreover, the spectrum of (2.3)–(2.7) restricted toH+ (H−) coincides with
the spectrum of −∆ considered in

Ω := {(x, y) ∈ Ω+ | x > 0}
with unchanged boundary conditions on the ‘old’ boundary and Neumann (Dirichlet)
boundary conditions on the ‘new’ boundary {(x, y) | x = 0, b < y < 1}, see figure 3.

The continuous spectra of both these problems are still [π2/4,∞), but using the
variational approach described above one can find the eigenvalues of these problems
below π2/4. Let us call such eigenvalues λN1 , . . . , λ

N
kN

and λD1 , . . . , λ
D
kD

respectively, so

that there are kN (kD) eigenvalues of these problems below π2/4.

3. Explicit estimates for eigenvalues
The aim of this section is to prove the following.

Theorem 3.1. Let λNj , λDj ∈ (0, π2/4) be the eigenvalues defined above. Then the
following inequalities hold for all j:

π2

a2
(j − 1)2 6 λNj 6

π2

a2

(
j − 1

2

)2
(3.1)
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and
π2

a2

(
j − 1

2

)2
6 λDj 6

π2

a2
j2. (3.2)

Moreover, each interval (3.1), (3.2) with right endpoint < π2/4 contains one and only
one eigenvalue.

Before giving the proof of this theorem let us state its immediate implications.
We define the counting function NN(λ) (ND(λ)) to be the number of eigenvalues λNj

(λDj ) which are less than λ. We also define Ntotal := NN(π2/4)+ND(π2/4) = kN +kD . In

other words, Ntotal is the total number of trapped modes antisymmetric with respect
to the centreline with frequencies below the cutoff frequency (the frequency above
which one gets propagating antisymmetric modes).

In what follows [z] stands for the greatest integer strictly less than z; that is, [z] is
the integer part of z if z is non-integer, and [z] = z − 1 if z is integer. Theorem 3.1
implies

Corollary 1. Let λ ∈ (0, π2/4]. Then[a
π
λ1/2
]
6 ND(λ) 6 NN(λ) 6

[a
π
λ1/2
]

+ 1. (3.3)

Corollary 2. Let λ ∈ (0, π2/4] be fixed. Then the following asymptotic formulae
hold as a→ +∞:

NN(λ) ∼ a

π
λ1/2, ND(λ) ∼ a

π
λ1/2. (3.4)

Corollary 3. The following asymptotic formula for the total number of trapped
modes holds as a→ +∞:

Ntotal ∼ a. (3.5)

Proof of Theorem 3.1. Let us prove formula (3.1) (formula (3.2) is proved similarly).
Throughout the proof we will be dropping the superscript N referring to the type of
boundary condition on the y-axis. In particular, we shall write N(λ) = NN(λ). The
number λ will be assumed to satisfy 0 < λ < π2/4.

The main idea is to use Dirichlet–Neumann bracketing along the line x = a. Let
us cut Ω into two domains: A := {(x, y) ∈ Ω | x < a} and B := {(x, y) ∈ Ω | x > a}.
Denote by λA,Nj (λA,Dj ) the eigenvalues of −∆ acting in the domain A with Neumann
(Dirichlet) boundary conditions on the ‘new’ boundary {(x, y) | x = a, b < y < 1} and
the same boundary conditions on the ‘old’ boundary as before; of course, the latter
means having Neumann boundary conditions on the top, bottom, and left-hand sides

of A. In the same way we define λB,Nj and λB,Dj . Let NN
A (λ) be the number of eigenvalues

λ
A,N
j which are less than λ; similarly we define the three other counting functions. Let

us emphasize that now the letters N and D stand for boundary conditions on the
interval x = a, b < y < 1, and not on the y-axis!

The essential spectrum of all the operators involved is either empty (−∆ acting on
A), or [π2/4,∞) (−∆ acting on B or Ω). We have assumed that λ < π2/4, therefore the
variational principle implies the following formula, known as the Dirichlet–Neumann
bracketing (see e.g. Courant & Hilbert, Theorem VI.2.5):

ND
A (λ) +ND

B (λ) 6 N(λ) 6 NN
A (λ) +NN

B (λ). (3.6)
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Using separation of variables one can easily compute the eigenvalues on A: say, if we
have Dirichlet conditions on the right-hand side, then{

λ
A,D
j

}∞
j=1

=

{
π2

a2

(
n− 1

2

)2
+

π2

(1− b)2
(m− 1)2

}∞
n,m=1

. (3.7)

In a similar way {
λ
A,N
j

}∞
j=1

=

{
π2

a2
(n− 1)2 +

π2

(1− b)2
(m− 1)2

}∞
n,m=1

. (3.8)

Note that the values of the expressions in the right-hand sides of (3.7)–(3.8)
corresponding to m > 1 are greater than π2/4, therefore, when dealing with eigenvalues

below π2/4, we may assume that m = 1. Let us now look at the sets {λB,Nj } ∩ [0, π2/4)

and {λB,Dj } ∩ [0, π2/4). Using separation of variables one can easily show that the first
of these two sets is empty. Indeed, the spectrum of −∆ on B with Neumann boundary
conditions on the top and left-hand sides and Dirichlet boundary condition on the
bottom side is the interval [π2/4,∞). Let us now prove that {λB,Dj } ∩ [0, π2/4) = ∅.
Suppose that λB,D1 < π2/4. Then the variational principle implies λB,N1 < π2/4, and we
have just seen that this is not the case. Therefore, for λ < π2/4 we have

ND
A (λ) 6 N(λ) 6 NN

A (λ). (3.9)

Formulae (3.7)–(3.9) imply (3.1).

4. Numerical results
In this section we provide some numerical results for the eigenvalues λNj and λDj

introduced at the end of § 2.
Computations were done using the variational method. Namely, we considered the

Rayleigh quotient Q(φ) on Ω (see (2.8)) and, minimizing it, successively determined
the eigenvalues and eigenfunctions. Applying this procedure we imposed Dirichlet
boundary conditions on the appropriate parts of ∂Ω, but did not impose Neumann
ones because they are automatically satisfied at the extrema of Q(φ). The discretization
of Q(φ) was carried out over a square mesh with mesh size h = 1/20. We truncated our
domain Ω to a finite one by imposing a Dirichlet boundary condition at x = c = 40, see
figure 4. (Our numerical calculations showed that the dependence of the eigenvalues
on the choice of c is hardly noticeable for c > 40.) The actual minimization of the
(discretised) Q(φ) was performed by the gradient method. As the first approximation
for the nth eigenfunction we took

φ(x, y) =

{
sin (n/a)πx for x 6 a
0 for x > a

(4.1)
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a 1 2 3 4 5 10 20

λN1 1.102 0.410 0.209 0.126 0.085 0.023 0.006

λN2 1.780 1.108 0.748 0.206 0.053

λN3 2.016 0.568 0.149

λN4 1.108 0.289

λN5 1.818 0.477

λN6 0.712

λN7 0.994

λN8 1.320

λN9 1.690

λN10 2.100

λD1 1.554 0.821 0.500 0.335 0.092 0.024

λD2 1.920 1.313 0.365 0.094

λD3 0.816 0.218

λD4 1.442 0.373

λD5 2.234 0.589

λD6 0.847

λD7 1.151

λD8 1.500

λD9 1.891

λD10 2.315

Table 1. Eigenvalues for b = 0.

in the case of the Dirichlet boundary condition on the y-axis, and

φ(x, y) =

{
cos ((n− 1

2
)/a)πx for x 6 a

0 for x > a
(4.2)

in the case of the Neumann one. It turns out that the graphs of the actual eigen-
functions (which we omit for the sake of brevity) are remarkably close to (4.1) and
(4.2).

Our main numerical results are presented in tables 1 and 2. Of course, for a that are
not too large these results agree with those of Evans & Linton (1991). The accuracy
of our numerical results is determined by two main factors: the choice of truncation
distance c and mesh size h. Elementary analysis involving separation of variables
shows that imposing an artificial boundary condition at x = c introduces an error of

the order of e−
√
π2/4−λj (c−a) which is negligible for our values of a, c and λj . Predicting

the error arising from the choice of mesh size is more complicated, but our numerical
experiments with the refinement from h = 1/10 to h = 1/20 indicate that the relative
error in the determination of the λj is not greater than 1%.

Our results seem to suggest that for large values of a the dependence of eigenvalues
on b is insignificant. This agrees with the fact that the inequalities (3.1), (3.2) do
not contain the parameter b. Note that a rigorous analysis of this b-dependence is
a delicate mathematical problem because changing b involves moving the part of
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a 1 2 3 4 5 10 20

λN1 1.494 0.484 0.234 0.137 0.089 0.024 0.006

λN2 2.237 1.295 0.841 0.216 0.055

λN3 2.330 0.601 0.152

λN4 1.178 0.297

λN5 1.946 0.493

λN6 0.731

λN7 1.023

λN8 1.362

λN9 1.746

λN10 2.186

λD1 1.888 0.925 0.545 0.359 0.094 0.024

λD2 2.299 1.496 0.385 0.097

λD3 0.865 0.219

λD4 1.538 0.388

λD5 2.404 0.606

λD6 0.872

λD7 1.186

λD8 1.550

λD9 1.962

λD10 2.423

Table 2. Eigenvalues for b = 1/2.

y

x
a–a

Figure 5. Obstacle of fairly general shape.

the boundary with the Neumann condition. It is known that in such a situation the
eigenvalues are not, in general, domain monotone.

Table 3 provides a numerical illustration of Theorem 3.1. This table indicates that
our upper estimate is in most cases closer to the actual eigenvalue than the lower one.

5. Long obstacles of general shape
Let −1 = X0 < X1 < · · · < Xm = 1 be a partition of the interval [−1, 1] into m

subintervals [Xi−1, Xi], and let fi : [Xi−1, Xi]→ [0, 1) be a family of smooth functions.
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j (π2/a2)(j − 1)2 λNj (π2/a2)(j − 1
2
)2 λDj (π2/a2)j2

1 0.000 0.005 0.006 0.024 0.025
2 0.025 0.053 0.056 0.094 0.099
3 0.099 0.149 0.154 0.218 0.222
4 0.222 0.289 0.302 0.373 0.395
5 0.394 0.477 0.499 0.589 0.617
6 0.617 0.712 0.746 0.847 0.888
7 0.888 0.994 1.042 1.151 1.209
8 1.209 1.320 1.388 1.500 1.579
9 1.579 1.690 1.783 1.891 1.999

10 1.998 2.099 2.227 2.315 2.467

Table 3. Numerical illustration of Theorem 3.1 (a = 20, b = 0).

Let a > 0 be a real parameter. Put

Oa :=

m⋃
i=1

{(x, y) | x ∈ [aXi−1, aXi], 0 6 y 6 fi(x/a)}

(so that Oa is an obstacle of length 2a). Let us consider the problem (2.1) in the domain
Ω+
a := (−∞,∞) × (0, 1) \ Oa with Neumann boundary conditions on {y = 1} ∪ ∂Oa

and Dirichlet boundary conditions on {|x| > a, y = 0}. Figure 5 shows an example
of such an obstacle. We denote by N(λ) the number of eigenvalues of this problem
below λ, and put Ntotal := N(π2/4). The aim of this section is to prove the following
theorem which generalizes Corollaries 2 and 3 from § 3.

Theorem 5.1. Let λ ∈ (0, π2/4] be fixed. Then

N(λ) ∼ 2a

π
λ1/2 (5.1)

as a→ +∞. In particular,

Ntotal ∼ a. (5.2)

Proof. In order to prove (5.1) we have to show that

N(λ) >
2a
√
λ

π
− o(a) (5.3)

and

N(λ) <
2a
√
λ

π
+ o(a). (5.4)

We shall, as before, prove these estimates using Dirichlet–Neumann bracketing.

We first prove (5.3). Let ε > 0 be a small number. Put

ni = ni(ε, a) :=

[
a(Xi −Xi−1)

√
λ− ε

π

]
, i = 1, . . . , m, (5.5)

xi,j = xi,j(ε, a) := a

(
Xi−1 +

j(Xi −Xi−1)

ni

)
, i = 1, . . . , m, j = 0, 1, . . . , ni,
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and impose additional Dirichlet conditions on the vertical intervals

{(x, y) | x = xi,j , fi(x/a) < y < 1} , i = 1, . . . , m, j = 0, 1, . . . , ni. (5.6)

The variational principle implies that the spectrum of this new problem (i.e. the
problem (2.1) with Neumann boundary conditions on {y = 1} ∪ ∂O and Dirichlet
boundary conditions on {|x| > a, y = 0} and on (5.6)) is higher than that of the initial
problem. In other words, N(λ) can be estimated from below by the corresponding
counting function of the new problem. The latter is, in turn, not less than

m∑
i=1

ni∑
j=1

Ni,j(λ).

Here Ni,j(λ) is the number of eigenvalues of the Laplacian on the ‘almost rectangle’

Ωi,j := {(x, y) | xi,j−1 < x < xi,j , fi(x/a) < y < 1}
with Neumann boundary conditions on the horizontal sides y = 1 and y = fi(x/a)
and Dirichlet boundary conditions on the vertical sides x = xi,j−1 and x = xi,j . When

a → ∞ all ‘almost rectangles’ Ωij converge to proper rectangles of width π/
√
λ− ε,

and the convergence is uniform in i, j. We now want to show that

Ni,j(λ) > 1 (5.7)

for large enough a uniformly over i, j. In fact, it is easy to show (see, for example,
Stollmann 1995) that the spectra of the Ωij converge to the spectra of proper
rectangles (with corresponding boundary conditions) uniformly in i, j. Since the
bottom eigenvalue of the proper rectangles is λ − ε, this would imply (5.7). To
make the proof self-contained, we will also prove (5.7) directly. Indeed, consider the
following test function φij : Ωij → R:

φij(x, y) = sin

(
π(x− xi,j−1)

xi,j − xi,j−1

)
.

When a→∞, both expressions ∫ ∫
Ωij

|∇φij |2 dx dy

and ∫ ∫
Ωij

|φij |2 dx dy

converge to the corresponding integrals over the limiting rectangles uniformly over
i, j. This means that their ratio

Q(φij) =

∫ ∫
Ωij

|∇φij |2 dx dy∫ ∫
Ωij

|φij |2 dx dy

uniformly converges to the corresponding expression with integrals taken over rect-
angles. Since the latter expression equals λ − ε, this argument shows that for large a
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the inequality (5.7) is indeed fulfilled. Therefore,

N(λ) >
m∑
i=1

ni∑
j=1

Ni,j(λ) >
m∑
i=1

ni∑
j=1

1 =

m∑
i=1

ni >
2a
√
λ− ε
π

− m =
2a
√
λ

π
− m+ O(εa).

Since ε > 0 is arbitrary, this implies (5.3).
The proof of (5.4) is analogous, the only difference being that we replace (5.5) by

ni = ni(ε, a) :=

[
a(Xi −Xi−1)

√
λ+ ε

π

]
and impose Neumann conditions on the vertical intervals (5.6).
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